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Abstract

The valuation of an electricity storage device is based on the expected future cash flow generated by
the device. Two potential sources of income for an electricity storage system are energy arbitrage
and participation in the frequency regulation market. Energy arbitrage refers to purchasing (stor-
ing) energy when electricity prices are low, and selling (discharging) energy when electricity prices
are high. Frequency regulation is an ancillary service geared towards maintaining system frequency,
and is typically procured by the independent system operator in some type of market. This paper
outlines the calculations required to estimate the maximum potential revenue from participating in
these two activities. First, a mathematical model is presented for the state of charge as a function
of the storage device parameters and the quantities of electricity purchased/sold as well as the
quantities offered into the regulation market. Using this mathematical model, we present a linear
programming optimization approach to calculating the maximum potential revenue from an elec-
tricity storage device. The calculation of the maximum potential revenue is critical in developing
an upper bound on the value of storage, as a benchmark for evaluating potential trading strate-
gies, and a tool for capital finance risk assessment. Then, we use historical California Independent
System Operator (CAISO) data from 2010-2011 to evaluate the maximum potential revenue from
the Tehachapi wind energy storage project, an American Recovery and Reinvestment Act of 2009
(ARRA) energy storage demonstration project. We investigate the maximum potential revenue
from two different scenarios: arbitrage only and arbitrage combined with the regulation market.
Our analysis shows that participation in the regulation market produces four times the revenue
compared to arbitrage in the CAISO market using 2010 and 2011 data. Then we evaluate several
trading strategies to illustrate how they compare to the maximum potential revenue benchmark.
We conclude with a sensitivity analysis with respect to key parameters.

keywords: electricity storage, energy arbitrage, frequency regulation market, storage valuation,
linear programming optimization.
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1 Introduction

Electricity storage devices date back to the invention of the zinc-sliver primary battery in 1800 by
Alessandro Volta [1]. The first large grid-connected energy storage devices were pumped hydro-
electric systems constructed in Italy and Switzerland in the 1890’s. The first grid-connected energy
storage device in the United States was the pumped hydroelectric Rocky River Plant, New Milford,
Connecticut which came on line in 1929 [2]. With the advent of modern power electronics and an
increased demand for variable generation like wind and solar, there has been a renewed interest in
grid-scale electricity storage devices. The different mechanisms for storing electricity can be divided
into one of four categories: electrical, mechanical, thermal, and chemical. Examples in the electric
category include superconducting magnetic energy storage and capacitors. Pumped hydroelectric
power, compressed air, and flywheels represent mechanical storage mechanisms. Batteries are the
most common type of chemical storage and ice is the most common form of thermal storage.

Potential benefits of electricity storage include firming of variable renewable generation (e.g.
wind and solar), shifting renewable energy from low demand periods to high demand periods, and
increased grid reliability (e.g. voltage support and frequency regulation). Potential societal benefits
include reduced fossil fuel use and reduced emissions. A complete discussion of potential benefits
appears in [3, 4].

Regardless of the application or benefit, electricity storage is ultimately only as valuable as
the revenue stream generated by the storage device. In deregulated markets, this revenue stream
comes from participating in the markets for energy and ancillary services (e.g. frequency regulation,
operating reserves, and voltage support) [5]. In regulated regions, vertically integrated utilities must
invest in technologies that provide reliable electricity to the consumer at the lowest cost. In this
scenario, electricity storage must be compared to the cost of competitive technologies that provide
the capabilities required by the utility. An additional source of revenue is government incentives
designed to guide future investment decisions based on the public good.

The two potential revenue streams considered in this paper are energy arbitrage and participa-
tion in the regulation market. Arbitrage involves purchasing (charging) energy when prices are low,
e.g. during times of low demand, and selling (discharging) energy when prices are high, e.g. during
times of peak demand. There are conversion losses when energy is stored, so depending on the
conversion efficiency, more energy must be purchased than can be sold. There are also constraints
based on the specification of the storage device. Typical constraints include limits on the state of
charge and the rate at which energy may be stored or discharged. For example, a storage device
that has a full state of charge cannot accept any additional energy. The arbitrage scenario in this
paper assumes that all energy transactions occur in the day ahead market for energy. Another
possibility is to arbitrage the day ahead market with the spot market.

Regulation up and regulation down (sometimes they are combined into a single regulation
quantity) are ancillary services designed to maintain frequency stability. The frequency of the grid is
maintained at 60 Hz in the United States and Canada. If the load increases while generation is held
constant, the frequency will drop. Similarly, if the load decreases while generation is held constant,
the frequency will rise. In order to maintain tight tolerances on the frequency, generation must be
constantly dithered so that load and generation are equal. An alternative approach, referred to as
demand response, is to modulate the load to meet generation. Price responsive demand response is
starting to be used in conjunction with controlling generation in some regions. Depending on the
market, a balancing authority or vertically integrated utility will control generation on a second
by second basis to track the load. In deregulated regions, the balancing authority must reserve
enough regulation capacity to meet expected variations in load. Regulation up is the ability to
provide additional generation on command. Regulation down is the ability to reduce generation, or
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store power, on demand. Current practice is to reimburse regulation based on capacity along with
compensation for any electricity that is purchased or sold. Based on FERC oder 755, the industry
is evolving towards “pay for performance” where the compensation will be based on the amount of
regulation provided (e.g. faster responding devices can provide more benefit and therefore should
be compensated appropriately). The analysis in this paper is based on the current renumeration
methodology, but can be easily modified to accommodate compensation schemes arising from FERC
order 755.

This paper outlines a framework for calculating the maximum revenue from an electricity stor-
age system that participates in energy arbitrage and the regulation market. This implies that the
storage device is operating in a deregulated region. The approach is designed to calculate the
”best-case” scenario assuming perfect knowledge of past, current, and future prices. This calcu-
lation is critical because it provides an upper bound on the revenue that can be collected by a
storage facility. This quantity can be used to score other trading strategies and also is useful in
estimating an upper bound for the value of the storage facility. The problem is formulated as a
linear programming optimization based on the operational constraints of the energy storage sys-
tem. This paper builds on previous work modeling electricity storage facilities. The energy storage
model and linear programming optimization presented in this paper build on the results in [6].
Mokrian and Stephen present a stochastic framework for the valuation of electricity storage and
present the linear programming optimization approach as a method for calculating the absolute
highest achievable profit from an arbitrage strategy. A related area is the valuation of natural gas
storage facilities. Recent work in this area includes [7, 8]. Revenue from energy arbitrage and
the regulation ancillary services market are only two of the potential benefits of electricity storage
devices. A complete review of potential revenue streams is outlined in [3, 4].

This report is organized as follows: Section 2 presents a model for the energy storage device
that is used throughout this paper. Section 3 provides a Linear Programming (LP) optimization
approach for estimating the maximum revenue from arbitrage and the regulation market. Section 4
presents a case study for the Tehachapi Wind Energy Storage storage project. Concluding remarks
are found in Section 5.

2 Electricity Storage Model

A block diagram representing a typical energy storage system is shown in Figure 1. The power input
is electricity that is converted to some type of stored energy. Common energy storage mechanisms
include mechanical, electrical, chemical, and thermal [3]. Examples of mechanical storage mecha-
nisms are pumped hydro, compressed air, and flywheels. Super conducting magnetic energy storage
and capacitors are examples of electrical storage mechanisms. Batteries are the most common type
of chemical energy storage. The most prevalent form of thermal storage is ice. The power output
block represents the conversion from stored energy to electricity out. For some types of energy
storage, e.g. electrochemical cells, the power input and power output systems are closely coupled.
In this case, a bi-directional AC-DC inverter is common. For other types of energy storage, e.g.
compressed air, the input power and output power systems are fairly distinct. In this case, the
power input system injects compressed air into the reservoir. The power output system combines
compressed air with natural gas to run turbines that generate the output electric power.

The key parameters that characterize a storage device are:

• Power Rating [MW]: the maximum power of the storage device (charge and discharge). It
is possible to have a different power rating for charging and discharging.

• Energy Capacity [Joules or MWh]: the amount of energy that can be stored.
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Power Input Storage Device Power Output

• Electrical

• Chemical

• Mechanical

• Thermal

Figure 1: Storage block diagram

• Efficiency [percent]: the ratio of the energy discharged by the storage system divided by the
energy input into the storage system. Efficiency can be broken down into two components:
conversion efficiency and storage efficiency. Conversion efficiency describes the losses encoun-
tered when input power is stored in the system. Storage efficiency describes the time-based
losses in a storage system.

• Ramp Rate [MW/min or percent nameplate power/min]: the ramp rate describes how
quickly the storage device can change its input/output power level.

For the analysis in this report, we are concerned with the quantity of energy charged or discharged
during each time period for each potential activity (e.g. arbitrage or regulation). For arbitrage, the
device will maintain a constant output power over each time period. For regulation, it is assumed
that the device is capable of tracking the regulation signal. Since the ramping time is negligible
compared to the time period (e.g. one hour), it is safe to ignore the effects of ramp rate. If the
ramp rate is slow compared to the time period this approximation does not hold and a model that
incorporates ramp rate must be employed.

The following parameters capture the storage system constraints:

Storage Parameters
t time period (e.g. one hour)
q̄D maximum quantity that can be sold/discharged in a single period (MWh)
q̄R maximum quantity that can be bought/recharged in a single period (MWh)
S̄ maximum storage capacity (MWh)
γS storage efficiency (fraction of stored energy maintained over one period)
γC conversion efficiency (fraction of input energy that gets stored)

Since we have assumed that the ramping time is negligible, the maximum quantity that can be
sold/discharged in a single period is equivalent to

q̄D = (Maximum discharge power level)× (time period) (1)

Likewise, the maximum quantity that can be bought/recharged in a single period is equivalent to

q̄R = (Maximum recharge power level)× (time period) (2)

For a storage device that provides only one service, e.g. arbitrage, there are two decision
variables:

Decision Variables
qDt quantity of energy sold (Discharged) at time t (MWh)
qRt quantity of energy purchased (Recharged) at time t (MWh)
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The decision variables are assumed to be non-negative quantities. The state of charge St at any
time t is given by

St = γsSt−1 + γcq
R
t − qDt (3)

The state of charge at time t is the state of charge at time t − 1 adjusted for storage losses plus
any net charging (adjusted for conversion losses) minus the quantity discharged in the time period.
Additional constraints include:

0 ≤ St ≤ S̄, for all t
0 ≤ qRt ≤ q̄R, for all t
0 ≤ qDt ≤ q̄D, for all t

(4)

For a device that is participating in arbitrage and the regulation market, a few additional
quantities must be incorporated into the storage device model. Assuming a separate market for
regulation up and regulation down, the decision variables are:

Decision Variables
qDt quantity of energy sold (Discharged) at time t (MWh)
qRt quantity of energy purchased (Recharged) at time t (MWh)
qRU
t quantity of energy offered into the regulation up market at time t (MWh)
qRD
t quantity of energy offered into the regulation up market at time t (MWh)

Once again, the decision variables are assumed to be non-negative quantities. For energy arbitrage,
the scheduled and actual quantities are equal. For the regulation market, a resource usually offers
a capacity and there is no guarantee that all of the offer will be accepted. Fortunately, since
frequency regulation is concerned with the short-term balance of load and generation to maintain
system frequency, regulation signals are usually zero mean over longer time periods. This time
period varies depending on the market characteristics. For CAISO, the regulation need can have a
non-zero mean for up to several hours. On the other hand, the PJM regulation need is zero mean
over most 1-hour intervals. A representative regulation command signal is shown in Figure 2.

In order to quantify the change in state of charge from participation in the regulation market, it
is useful to define the regulation up efficiency γru as the fraction of the regulation up reserve capac-
ity that is actually employed in real-time (on average). Similarly, the regulation down efficiency γrd
is the fraction of the regulation down reserve capacity that is actually employed in real-time (on av-
erage). For Figure 2 the regulation up/down efficiency is approximately 13%. Another assumption
is that the regulation signal is allocated equally among participating regulation resources, e.g. over
any given time period the regulation signal for each resource is proportional to the total regulation
need. The scale factor is the quantity offer by that resource divided by the total quantity procured.

The state of charge at time t for a device participating in arbitrage and regulation is given by

St = γsSt−1 + γcq
R
t − qDt + γcγrdq

RD
t − γruqRU

t (5)

subject to the following constraints

0 ≤ St ≤ S̄, for all t
0 ≤ qRt + qRD

t ≤ q̄R, for all t
0 ≤ qDt + qRU

t ≤ q̄D, for all t
(6)

Participating in regulation down provides the opportunity to increase the state of charge subject to
the regulation down efficiency and the conversion efficiency. Participation in regulation up provides
the opportunity to decrease the state of charge subject to the regulation up efficiency. The quantities
allocated to regulation up and regulation down reduce the maximum potential quantities allocated
to arbitrage subject to the charge/discharge constraints of the device. This next section presents
an approach to maximize revenue using these storage models.
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Figure 2: Representative regulation command signal.

3 Maximizing Revenue: A Linear Programming Optimization Approach

The standard Linear Programming (LP) optimization formulation, which minimizes a linear func-
tion of the state, fTx, subject to constraints, is typically defined as [9]

min
x
fTx such that


Ax ≤ b

Aeqx = beq
lb ≤ x ≤ ub

(7)

The problem of maximizing revenue from an energy storage device is naturally formulated as an
LP optimization problem. The next two sections combine the energy storage model with a cost
function to maximize the revenue in two different scenarios: arbitrage and arbitrage combined with
participation in the regulation market.

3.1 Arbitrage

From the previous section, the model for the storage device participating in arbitrage is given by:

St = γsSt−1 + γcq
R
t − qDt (8)

The constraints on the state of charge St, the quantity purchased qRt , and the quantity sold qRt at
each time step t are given by:

0 ≤ qDt ≤ q̄D bounds on the discharge quantity at time period t
0 ≤ qRt ≤ q̄R bounds on the charge quantity at time period t
0 ≤ St ≤ S̄ bounds on the state of charge quantity at time period t

(9)
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For a storage device engaging in arbitrage, we are trying to maximize the profit from buying energy
at low prices and selling energy at higher prices, subject to the constraints of the storage facility.
The quantity we are solving for is the amount of energy bought (charged) and sold (discharged) at
each time step. Thus x is defined as

x =



qD1
qD2
qD3
...
qDT
qR1
qR2
qR3
...
qRT


(10)

where qDt is the quantity of energy discharged (sold) at time period t while qRt is the quantity of
energy used for recharging (bought) at time period t. When the device is recharged, some of the
energy is lost from inefficiency. The conversion efficiency γc is the fraction of purchased electricity
that gets stored. Likewise, the storage device loses small amounts of energy over each time period.
The storage efficiency γs, defined as the fraction of stored electricity maintained over one period,
captures this loss. Using these two parameters, the recursion equation describing the amount of
energy St stored in the facility at time period t is given by:

St = γsSt−1 + γcq
R
t − qDt (11)

Assuming an uncharged initial condition, S0 = 0, the terms of the storage model for the first few
time steps are listed below:

t=1 S1 = γcq
R
1 − qD1

t=2 S2 = γs
(
γcq

R
1 − qD1

)
+ γcq

R
2 − qD2

t=3 S3 = γs
[
γs
(
γcq

R
1 − qD1

)
+ γcq

R
2 − qD2

]
+ γcq

R
3 − qD3

t=4 S4 = γs
[
γs
[
γs
(
γcq

R
1 − qD1

)
+ γcq

R
2 − qD2

]
+ γcq

R
3 − qD3

]
+ γcq

R
4 − qD4

Writing this in matrix form yields the first inequality constraint for the storage device:

Asx = S, where As = [Ad|Ar] (12)

with

Ad =



−1 0 0 0 . . . 0
−γs −1 0 0 . . . 0
−γ2s −γs −1 0 . . . 0
−γ3s −γ2s −γs −1 . . . 0

...
...

...
...

. . .
...

−γT−1
s −γT−2

s −γT−3
s −γT−4

s . . . −1


(13)
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Ar =



γc 0 0 0 . . . 0
γsγc γc 0 0 . . . 0
γ2sγc γsγc γc 0 . . . 0
γ3sγc γ2sγc γsγc γc . . . 0

...
...

...
...

. . .
...

γT−1
s γc γT−2

s γc γT−3
s γc γT−4

s γc . . . γc


(14)

S =
[
S1 S2 S3 . . . ST

]T
(15)

Additional inequality constraints come from the maximum charge/discharge per time period and
the maximum storage capacity of the facility:

0 ≤ qDt ≤ q̄D, 0 ≤ qRt ≤ q̄R, 0 ≤ St ≤ S̄ (16)

The first two constraints are handled by the upper and lower bounds on the quantity being solved
for, lb ≤ x ≤ ub.

lb2Tx1 =
[

0 . . . 0
]T
, ub2Tx1 =

[
q̄D . . . q̄D q̄R . . . q̄R

]T
(17)

The last constraint must be handled as outlined below.

combining 0 ≤ St and S ≤ Asx yields −Asx ≤ 0 (18)

combining S ≤ Asx and St ≤ S̄ yields Asx ≤ S̄ (19)

combining the above two inequalities in matrix form yields the following system of equations:

Ax ≤ b,where A =

[
−As

As

]
, b =

[
0 . . . 0 S̄ . . . S̄

]T
(20)

The financial quantities of interest are:

Pt Price of electricity (LMP) at time t ($/MWh)
Cd Cost of discharging at time t ($/MWh)
Cr Cost of recharging at time t ($/MWh)
r Interest rate over one time period

For this analysis, the cost terms are assumed to be 0 since we are focusing on maximizing revenue.
If there are costs associated with charging or discharging, e.g. the system has a limited cycle life so
the cost of charging or discharging can be quantified, this term may be considered. If the costs are
included, the same approach can be employed to maximize profit. The cost function (or revenue)
that we are trying to maximize is given by:

J =
T∑
t=1

[
(Pt − Cd)qDt − (Pt + Cr)q

R
t

]
e−rt (21)

15



f =



(P1 − Cd)e−r

(P2 − Cd)e−2r

(P3 − Cd)e−3r

...
(PT − Cd)e−Tr

−(P1 + Cr)e
−r

−(P2 + Cr)e
−2r

−(P3 + Cr)e
3−r

...
−(PT + Cr)e

−Tr


(22)

Since we are trying to maximize profits and need to formulate the problem as a minimization
problem, we can define a new cost function J∗ that is the negative of the original cost function.
Therefore, minimizing J∗ maximizes the profits from the facility.

J∗ = −fTx (23)

3.2 Arbitrage and Regulation

The model for the storage device participating in arbitrage and the regulation market is given by:

St = γsSt−1 + γcq
R
t − qDt + γcγrdq

RD
t − γruqRU

t (24)

where St is the state of charge, qRt is the energy purchased, qRt is the energy sold, qRU
t is the reserve

capacity offered into the regulation up market, and qRD
t is the reserve capacity offered into the

regulation down market at each time step t. γS is the storage efficiency (fraction of stored energy
maintained over one period), γC is the conversion efficiency (fraction of input power that gets
stored), γru is the regulation up efficiency (fraction of reserve capacity that is actually employed
in real-time), and γrd is the regulation down efficiency (fraction of reserve capacity that is actually
employed in real-time).

The state of charge St, the quantity purchased qRt , the quantity sold qRt , the quantity offered
into the regulation up market qRU

t , and the quantity offered into the regulation down market qRD
t

at each time step t are constrained by:

0 ≤ qDt + qRU
t ≤ q̄D bounds on the energy discharged at time period t

0 ≤ qRt + qRD
t ≤ q̄R bounds on the energy charged at time period t

0 ≤ St ≤ S̄ bounds on the state of charge quantity at time period t
(25)

It is important to note that under these assumptions energy allocated for the regulation up/down
market reduces the amount of energy that may be sold/purchased for arbitrage.

For a storage device engaging in energy arbitrage and the regulation market, we are trying to
maximize the revenue from arbitrage opportunities and selling ancillary services, subject to the
constraints of the storage facility. The quantity we are solving for is the amount of energy bought
(charged) and sold (discharged) at each time step as well as the amount offered into the regulation
up and regulation down markets. There are T time steps in the analysis and the length of the
time step is the time interval employed by the electricity market (e.g. 1 hour). For this analysis,
we consider regulation up and regulation down as two separate markets. If the region of interest
combines both types of regulation into one market, the analysis is simplified. Thus x is defined as
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x =



qD1
...
qDT

qR1
...
qRT

qRU
1
...

qRU
T

qRD
1
...

qRD
T



(26)

where qDt is the quantity of energy discharged (sold) at time period t, qRt is the quantity of energy
used for recharging (bought) at time period t, qRU

t is the amount of energy offered into the regulation
up market at time t, and qRD

t is the amount of energy offered into the regulation up market at
time t . When the device is recharged, some of the energy is lost from inefficiency. The conversion
efficiency γc is the fraction of purchased electricity that gets stored. Likewise, the storage device
loses small amounts of energy over each time period. The storage efficiency γs, defined as the
fraction of stored electricity maintained over one period, captures this loss. Some fraction of the
regulation up/down offers are accepted. This is captured by defining the regulation up efficiency
γru and the regulation down efficiency γrd. There are some constraints on γru and γrd that must
be observed. For example, it is not possible to provide 100% of the offered regulation up and down
in a time period. One way to look at the parameters γru and γrd is to define them as

γru = αruµru, γrd = αrdµrd, αru + αrd = 1, 0 ≤ µru, µrd ≤ 1 (27)

where αru represents the fraction of the time period that the capacity reserved for regulation up
is called upon and αrd represents the fraction of the time period that the capacity reserved for
regulation down is called upon. Therefore, αru + αrd = 1. µru represents the average fraction
of the regulation up offer called upon when regulation up is needed. Likewise, µrd represents the
average fraction of the regulation down offer called upon when regulation down is required. These
parameters are illustrated in Figure 3. In order to further clarify the definitions of these terms,
below are the calculations to determine the proper values from empirical data.

αru =
number of RU AGC samples in the period

number of AGC samples in the period
(28)

αrd =
number of RD AGC samples in the period

number of AGC samples in the period
(29)

µru =

∑
RU AGC samples in the period

number of RU AGC samples in the period

(
one time period

qRU
t

)
(30)
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Figure 3: Illustration of regulation up/down parameters, αru = 0.5, αrd = 0.5, µru = 0.5, µrd =
0.5, γru = 0.25, γrd = 0.25, qRU

t = 2 MWh , qRD
t = 2 MWh .

µrd =

∑
RD AGC samples in the period

number of RD AGC samples in the period

(
one time period

qRD
t

)
(31)

It is important to note that the characteristics of the AGC signal controlling the storage device
must follow this model in order for this analysis approach to be valid. In other words, the statistics
of the AGC signal must not vary greatly over time. In statistical terms, weak-sense-stationarity
is sufficient where the mean and covariance of the AGC signal do not change over time. This is
not difficult, one scenario that meets these requirements is to require that the AGC signal to the
storage device have zero mean over the time period. This is an operational requirement for flywheel
devices. If the characteristics of the AGC signal do not follow the model, the state of charge cannot
be computed reliably because of the path dependency induced by the characteristics (uncertainty)
of the control signal. In this case, Monte Carlo simulations must be applied to estimate the
maximum revenue from the system. Assuming the AGC signal follows the model presented above,
the recursion equation describing the amount of energy St stored in the facility at time period t is
given by

St = γsSt−1 + γcq
R
t − qDt + γcγrdq

RD
t − γruqRU

t (32)

Assuming a completely discharged initial condition, S0 = 0, the terms of the storage model for the
first few time steps are listed below:
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t=1 S1 = γcq
R
1 − qD1 + γcγrdq

RD
1 − γruqRU

1

t=2 S2 = γs
(
γcq

R
1 − qD1 + γcγrdq

RD
1 − γruqRU

1

)
+ γcq

R
2 − qD2 + γcγrdq

RD
2 − γruqRU

2

t=3 S3 = γs
[
γs
(
γcq

R
1 − qD1 + γcγrdq

RD
1 − γruqRU

1

)
+ γcq

R
2 − qD2 + γcγrdq

RD
2 − γruqRU

2

]
+

γcq
R
3 − qD3 + γcγrdq

RD
3 − γruqRU

3

Writing this in matrix form yields the first inequality constraint for the storage device:

Asx = S, where As = [Ad|Ar|Aru|Ard] (33)

with

Ad =



−1 0 0 0 . . . 0
−γs −1 0 0 . . . 0
−γ2s −γs −1 0 . . . 0
−γ3s −γ2s −γs −1 . . . 0

...
...

...
...

. . .
...

−γT−1
s −γT−2

s −γT−3
s −γT−4

s . . . −1


(34)

Ar =



γc 0 0 0 . . . 0
γsγc γc 0 0 . . . 0
γ2sγc γsγc γc 0 . . . 0
γ3sγc γ2sγc γsγc γc . . . 0

...
...

...
...

. . .
...

γT−1
s γc γT−2

s γc γT−3
s γc γT−4

s γc . . . γc


(35)

Aru =



−γru 0 0 0 . . . 0
−γsγru −γru 0 0 . . . 0
−γ2sγru −γsγru −γru 0 . . . 0
−γ3sγru −γ2sγru −γsγru −γru . . . 0

...
...

...
...

. . .
...

−γT−1
s γru −γT−2

s γru −γT−3
s γru −γT−4

s γru . . . −γru


(36)

Ard =



γcγrd 0 0 0 . . . 0
γsγcγrd γcγrd 0 0 . . . 0
γ2sγcγrd γsγcγrd γcγrd 0 . . . 0
γ3sγcγrd γ2sγcγrd γsγcγrd γcγrd . . . 0

...
...

...
...

. . .
...

γT−1
s γcγrd γT−2

s γcγrd γT−3
s γcγrd γT−4

s γcγrd . . . γcγrd


(37)

S =
[
S1 S2 S3 . . . ST

]T
(38)

Additional inequality constraints come from the maximum charge/discharge per time period and
the maximum storage capacity of the facility:

0 ≤ qDt + qRU
t ≤ q̄D bounds on the energy discharged at time period t

0 ≤ qRt + qRD
t ≤ q̄R bounds on the energy charged at time period t

0 ≤ St ≤ S̄ bounds on the state of charge quantity at time period t
(39)
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Since these constraints are a function of two parameters in x, the Ax ≤ b formulation must be
employed in addition to the constraints on x, lb ≤ x ≤ ub. The upper/lower bound constraints are
given by

lb4Tx1 =
[

0 . . . 0
]T
, ub4Tx1 =

[
q̄D . . . q̄D q̄R . . . q̄R q̄D . . . q̄D q̄R . . . q̄R

]T
(40)

The constraints that are a function of two parameters in x are described below.

0 ≤ qDt + γRU
t qRU

t ,
[
−ITxT 0TxT −ITxT 0TxT

]
x ≤ 0Tx1 (41)

qDt + γRU
t qRU

t ≤ q̄D,
[
ITxT 0TxT ITxT 0TxT

]
x ≤ [q̄D]Tx1 (42)

0 ≤ qRt + γRD
t ,

[
0TxT −ITxT 0TxT −ITxT

]
x ≤ 0Tx1 (43)

qRt + γRD
t ≤ q̄D,

[
0TxT ITxT 0TxT ITxT

]
x ≤ [q̄R]Tx1 (44)

combining 0 ≤ St and S ≤ Asx yields −Asx ≤ 0 (45)

combining S ≤ Asx and St ≤ S̄ yields Asx ≤ S̄ (46)

combining the above inequalities in matrix form yields the following system of equations:

Ax ≤ b,where A =



−Ad −Ar −Aru −Ard

Ad Ar Aru Ard

−I 0 −I 0
I 0 I 0
0 −I 0 −I
0 I 0 I

 , b =



0
S̄
0
q̄D

0
q̄R

 (47)

The financial quantities are defined by

Pt Price of electricity (LMP) at time t
PRU
t Price of regulation up at time t
PRD
t Price of regulation down at time t
Cd Cost of discharging at time t
Cr Cost of recharging at time t
r Interest rate for one period

The cost function (or revenue) that we are trying to maximize is given by:

J =

T∑
t=1

[
(Pt − Cd)qDt + (PRU

t + γru(Pt − Cd))qRU
t +

(PRD
t − γrd(Pt + Cr))q

RD
t − (Pt + Cr)q

R
t

]
e−rt

(48)

In many areas, the net energy for regulation is settled at the real-time price. This provides an
additional arbitrage opportunity between the day ahead price and the real-time price. Since this
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study is primarily concerned with arbitrage and regulation revenue from the day ahead market, the
price Pt represents the day ahead LMP. While this does not reflect the actual settlement process, it
keeps the optimization from incorporating any arbitrage between the day ahead and the real-time
market.

f =



(P1 − Cd)e−r

(P2 − Cd)e−2r

(P3 − Cd)e−3r

...
(PT − Cd)e−Tr

−(P1 + Cr)e
−r

−(P2 + Cr)e
−2r

−(P3 + Cr)e
−3r

...
−(PT + Cr)e

−Tr

(PRU
1 + γru(P1 − Cd))e−r

(PRU
2 + γru(P2 − Cd))e−2r

(PRU
3 + γru(P3 − Cd))e−3r

...
(PRU

T + γru(PT − Cd))e−Tr

(PRD
1 − γrd(P1 + Cr))e

−r

(PRD
2 − γrd(P2 + Cr))e

−2r

(PRD
3 − γrd(P3 + Cr))e

−3r

...
(PRD

T − γrd(PT + Cr))e
−Tr



(49)

Since we are trying to maximize profits and need to formulate the problem as a minimization
problem, we can define a new cost function J∗ that is the negative of the original cost function.
Therefore, minimizing J∗ maximizes the profits from the facility.

J∗ = −fTx (50)

The next section applies these optimization techniques to estimate the maximum potential
revenue for the Tehachapi Wind Energy storage project using historical data from 2010-2011.

4 Case Study: Tehachapi Wind Energy Storage Project

In this section we analyze 2010 and 2011 data from the CAISO (California Independent System
Operator) TAP78 6 B1 node to evaluate the maximum potential arbitrage and regulation market
opportunity for an energy storage device. This node in the CAISO system was selected because it is
near the location of the ARRA (American Recovery and Reinvestment Act of 2009) Tehachapi Wind
Energy Storage Project [10]. This project will demonstrate an 8MW , 32MWh grid-connected bat-
tery energy storage system. Southern California Edison (SCE) is leading the effort with engineering
consulting from Quanta Technology. The battery developer and manufacturer is A123 Systems.
CAISO is the independent system operator for the California Transmission grid.
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The analysis is broken into two sections. First, the results are presented for energy arbitrage
only. The subsequent section presents the results for energy arbitrage and the regulation market.
The parameters of the energy storage device are listed in Table 1. Historical financial data was
obtained from the CAISO OASIS (Open Access Same-Time Information System) web site [11].
This analysis focuses on the maximum potential gross revenue from two approaches: arbitrage only
and arbitrage combined with the regulation market. Therefore, expenses from maintenance, facility
leases, and other operational categories are ignored. The facility is also assumed to be operational
100 percent of the time. Net revenue, which must take into consideration these items, could be
significantly lower than the maximum potential gross revenue figures presented in this analysis.
The maximum potential gross revenue is a critical calculation because it serves as a benchmark to
evaluate the performance of an existing system or to evaluate the potential performance of trading
strategies for a proposed system. It is also important to note that arbitrage and regulation are only
two of the proposed benefits of the Tehachapi Wind Energy storage project. The complete list of
proposed benefits includes [12]

Transmission
1. Voltage support and grid stabilization
2. Decrease transmission losses
3. Diminish congestion
4. Increase system reliability
5. Defer transmission investment
6. Enhance value and effectiveness of renewable energy-related transmission
System
7. Provide system capacity/resource adequacy
8. Integrate renewable energy (smoothing)
9. Shift wind generation output
Grid
10. Frequency regulation
11. Spin/non-spin/replacement reserves
12. Ramp management
13. Energy price arbitrage

The revenue streams from each of these benefits must be accounted for when estimating the total
value of this energy storage system.

4.1 Arbitrage Only

This section presents the maximum possible revenue from arbitrage for an energy storage system
with the parameters in Table 1 and located near the CAISO TAP78 6 B1 node. An LP optimization
was performed on historical data to determine the optimum quantities of electricity that should
be purchased and sold subject to the constraints of the storage system to maximize the revenue.
The price of electricity was assumed to be the Locational Marginal Price (LMP) in the day ahead
market (DAM) from the CAISO OASIS system. The optimization was performed for each month
during 2010 and 2011. Because the optimization was run on a monthly basis, this implies boundary
conditions on the state of charge St. The state of charge must be 0 at the beginning and end of
each month. Results of the optimization for a single week are presented in Figure 4. For the most
part, the optimal strategy is to purchase energy when the price is low in the early morning hours
and sell when the price is high in the late afternoon and early evening. In addition to the diurnal
swing in prices, several days during this week exhibit an increase in prices in the late morning
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Parameter Value Description

q̄D 8MWh

maximum quantity that can
be sold/discharged in a single
period

q̄R 8MWh

maximum quantity that can
be bought/recharged in a sin-
gle period

S̄ 32MWh
maximum storage capacity of
the device

γs 1.0

storage efficiency (fraction of
stored energy maintained over
one period)

γc 0.8

conversion efficiency (fraction
of input power that gets
stored)

γru 0.25

regulation up efficiency (frac-
tion of reserve capacity that
is actually employed in real-
time)

γrd 0.25

regulation down efficiency
(fraction of reserve capacity
that is actually employed in
real-time)

∆t 1 hour
Length of time in a single time
period

r 0
Interest rate, continuous
compounding

Table 1: Energy storage device parameters for revenue analysis.
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Figure 4: Example arbitrage optimization results for one week, December 1-7, 2011. CAISO
TAP78 6 B1 node.

followed by a decline after lunch, which is then followed by the traditional increase in prices in the
early evening. For these days, the optimal policy is to complete two charge/discharge cycles in one
day (e.g. see Monday and Tuesday in Figure 4). A summary of the maximum monthly potential
arbitrage revenue for 2010-2011 is listed in Table 2. The same information is presented graphically
in Figure 5. Table 2 breaks down the percentage of time spent charging and discharging the system.

4.2 Arbitrage and Regulation Market

This section presents the maximum possible revenue from arbitrage and participation in the reg-
ulation market. The energy storage system parameters are the same as for the previous analysis.
The device parameters are summarized in Table 1 and the location is assumed to be near the
CAISO TAP78 6 B1 node. An LP optimization was performed on historical data to determine the
optimum quantities of electricity that should be purchased and sold for arbitrage as well as the
optimum quantities to offer into the regulation market to maximize revenue. The price of electricity
was assumed to be the Locational Marginal Price (LMP) in the day ahead market (DAM) from
the CAISO OASIS system. Likewise, the prices for regulation up and regulation down are from
the day ahead market. The optimization was performed for each month during 2010 and 2011.
This implies boundary conditions on the state of charge St. The state of charge must be 0 at the
beginning and end of each month.

The regulation settlement process in CAISO includes a payment/charge for net energy used/supplied
while performing regulation. CAISO employs the real-time price for the time period of interest in
the settlement process. As mentioned previously, incorporating this real-time price into the opti-
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2010 2011

January $13,312.81 January $20,761.66
February $11,536.89 February $26,308.60
March $13,546.55 March $29,689.12
April $11,618.19 April $36,168.24
May $11,507.19 May $33,802.68
June $31,470.36 June $40,382.73
July $29,443.67 July $44,660.42
August $23,503.50 August $33,120.60
September $17,745.66 September $21,733.96
October $10,894.70 October $15,316.56
November $10,209.21 November $15,500.19
December $13,541.88 December $14,547.74

Total $198,330.62 Total $331,992.49

Charge Discharge
Year Time (%) Time (%)

2010 20.88% 16.70%
2011 25.36% 20.29%

Table 2: Summary of arbitrage optimization results, 2010-2011. CAISO node TAP78 6 B1
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Figure 5: Summary of arbitrage optimization results. CAISO Node TAP78 6 B1.
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Figure 6: Example arbitrage and regulation market optimization results for one week, December
1-7, 2011. CAISO TAP78 6 B1 node. Legend for prices: blue: LMP, red: RU, green: RD.

mization would open up the opportunity to arbitrage the day ahead and real-time energy markets.
Since the focus of this analysis was on the day ahead energy and regulation markets, the day ahead
price was used in the regulation settlement. This forces the optimization to arrive at the optimal
policy based on day ahead energy and regulation prices, while ignoring the potential opportuni-
ties to arbitrage the day ahead and real-time market. This type of arbitrage represents another
potential revenue source, but the analysis is beyond the scope of this report.

Results of the optimization for a single week are presented in Figure 6. For participation in
arbitrage and the regulation department the optimal behavior is significantly different than for the
arbitrage only case. As see in Figure 6, the optimal strategy is to offer into the regulation market
the majority of the time with very selective participation in pure arbitrage. This is evident in
Figure 7 which shows the quantity of energy purchased qRt , the quantity of energy sold qDt , the
quantity offered into the regulation up market qRU

t , and the quantity offered into the regulation
down market qRD

t for the same week in December. There was only one small purchase of energy for
recharging and no selling of energy for discharging. All other transactions were executed through
the regulation market. The strategy corresponds to always participating in the regulation up/down
market simultaneously except for hours when electricity is very inexpensive and when the state of
charge needs to be increased. During these hours, offering into the regulation down market results
in some energy procurement as some fraction of the reserve capacity is employed for regulation in
real-time. The purchase costs are further reduced by the capacity charge collected for regulation
down. The price of regulation down is often highest when the LMP is lower (e.g. shortly after
midnight).
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Figure 7: Example arbitrage and regulation market optimization results for one week, December
1-7, 2011. CAISO TAP78 6 B1 node.
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2010 2011

January $71,103.25 January $76,825.72
February $88,296.91 February $50,015.48
March $134,799.22 March $107,063.38
April $54,354.18 April $211,301.04
May $90,515.97 May $164,734.76
June $135,820.36 June $138,109.37
July $91,061.94 July $153,057.00
August $56,740.30 August $100,426.99
September $50,994.81 September $65,498.31
October $50,601.42 October $79,579.72
November $50,277.53 November $78,569.27
December $61,409.31 December $63,250.14

Total $935,975.19 Total $1,288,431.19

Charge Discharge Regulation Up Regulation Down
Year Time (%) Time (%) Time (%) Time (%)

2010 4.71% 0.64% 81.10% 85.80%
2011 6.72% 0.78% 81.94% 79.60%

Table 3: Summary of arbitrage and regulation optimization results, 2010-2011. CAISO node
TAP78 6 B1

A summary of the maximum monthly potential arbitrage and regulation revenue for 2010-2011
is listed in Table 3. The same information is presented graphically in Figure 8. The next section
discusses several potential trading strategies for arbitrage only and arbitrage plus the regulation
market. These strategies are then benchmarked against the maximum possible revenue numbers
derived from the optimization in this section.

4.3 Trading Strategies

In this section we describe several trading strategies and compare them to the maximum potential
revenue calculated via the LP optimization. All strategies are based on the day ahead market for
energy and regulation. The first two strategies are for arbitrage only and the third strategy is for
arbitrage and the regulation market. For the case of arbitrage, a natural strategy is to use historical
data to predict when to purchase and sell energy. The mean hourly LMP’s for 2010 and 2011 are
shown in Figure 9. The correlation between the average hourly prices for the two years is 0.989.
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Figure 8: Summary of arbitrage and regulation optimization results. CAISO TAP78 6 B1 node.
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Hour 3AM 2AM 4AM 1AM 5AM
Price ($/MWh) 22.12 22.98 23.69 25.19 27.42

Hour 7PM 3PM 5PM 4PM 6PM
Price ($/MWh) 41.39 41.45 41.54 41.76 42.21

Table 4: 2010 hours with the highest and lowest energy prices

Maximum Prior Year Percent of
Year Revenue Strategy Maximum
2011 $331, 992.49 $218, 718.48 65.88%

Table 5: Arbitrage revenue employing prior year data for predicting energy prices, 2011. CAISO
TAP78 6 B1 node.

Based on this notion, the first arbitrage trading strategy is given by:

Arbitrage Trading
Strategy 1:



Sell S̄ MWh of energy during
the hours with the highest prices.
Use average prices from the prior year
to select the time periods.

Purchase S̄/γc MWh of energy during
the hours with the lowest price.
Use average prices from the prior year
to select the time periods.

(51)

where S̄ is the energy capacity of the electricity storage system.
For the 32MWh, 8MW system in our example, this corresponds to selling 8MWh during the

four hours with the highest prices. Since the conversion efficiency γc = 0.8, 40MWh of energy must
be purchased so that after the inefficiency losses the full 32MWh may be sold. This means that
energy must be purchased during the 5 hours with the lowest energy prices. The lowest and highest
energy prices for 2010 are shown in Table 4. The total arbitrage revenue for 2011 data using this
trading strategy comes to $218, 718.48. From the optimization analysis in the previous section, the
maximum possible arbitrage revenue in 2011 was $331, 992.49. Therefore the simple strategy of
employing average data from the previous year to select the optimal purchase and sale times only
harvests 65.88% of the maximum potential arbitrage profits. This information is summarized in
Table 5.

The second arbitrage strategy analyzed involves using the prior 24 hour period to determine
the optimal times to purchase and sell electricity for the current day. As with the first strategy,
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Correlation ρ = 0.989.
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Maximum Prior Day Percent of
Year Revenue Strategy Maximum
2010 $198,330.62 $162,602.55 81.99%
2011 $331,992.49 $285,874.36 86.11%

Table 6: Arbitrage revenue employing prior day data for predicting energy prices, 2010-2011.
CAISO TAP78 6 B1 node

the full capacity of the device is sold each day and S̄/γc is purchased each day.

Arbitrage Trading
Strategy 2:



Sell S̄ MWh of energy during
the hours with the highest prices.
Use prices from the prior 24 hours
to select the time periods.

Purchase S̄/γc MWh of energy during
the hours with the lowest price.
Use prices from the prior 24 hours
to select the time periods.

(52)

The results of this trading strategy are summarized in Table 6. This strategy is more effective
with 81.99% and 86.11% of the maximum revenue being recovered in the 2010-2011 time period.
Although this is a significant improvement over the first strategy, this approach still falls well short
of the maximum potential revenue for the time period. More sophisticated prediction algorithms
would be required to attempt to recover a larger percentage, and it may not be possible to harvest
the maximum potential revenue.

The third trading strategy is designed for participation in arbitrage and the regulation market
and is based on the optimization results. Given the storage system parameters, the device can
maintain a state of charge by participating in the regulation down market 100 percent of the time
and participating in the regulation up market for the 19.2 hours when the LMP prices are highest.
This strategy is summarized below and results for 2010-2011 data are shown in Table 7.

Arbitrage/Regulation
Trading Strategy 3:



Offer q̄R into the regulation
down market every hour.

Offer q̄D into the regulation
up market 19.2 hours a day.
Use prices from the prior 24 hours
to select the time periods
with the highest LMP.

(53)

4.4 Sensitivity Analysis

This section provides the results of a sensitivity analysis to price changes for both the maximum
potential return and the trading strategies in the previous section. Prices were increased and
decreased ten percent to calculate the sensitivity with respect to price. In addition, a sensitivity
analysis was conducted to show the effects of changes in the estimate of regulation up efficiency
γRU and regulation down efficiency γRD. A summary of the sensitivity analysis scenarios is listed
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Maximum Prior Day Percent of
Year Revenue Strategy Maximum
2010 $935,975.19 $893,544.7 95.47%
2011 $1,288,431.19 $1,218,173.0 94.55%

Table 7: Arbitrage and regulation revenue employing prior day data for predicting energy prices,
2010-2011, CAISO TAP78 6 B1 node

• Arbitrage only optimization. LMP ∈ {−10%, nominal, +10%}
• Arbitrage and regulation optimization. γRU , γRD ∈ {0%, 25%, 50%}
• Arbitrage and regulation optimization. LMP ∈ {−10%, nominal, +10%}
• Arbitrage and regulation optimization. Regulation up/down ∈ {−10%, nominal, +10%}
• Trading strategy 1. LMP ∈ {−10%, nominal, +10%}
• Trading strategy 2. LMP ∈ {−10%, nominal, +10%}
• Trading strategy 3. LMP ∈ {−10%, nominal, +10%}
• Trading strategy 3. Regulation up/down ∈ {−10%, nominal, +10%}

Table 8: Summary of sensitivity analysis scenarios.

in Table 8. A summary of the different sensitivity analysis results is listed in Table 9. As expected,
for the arbitrage only case the revenue is directly proportional to the LMP and thus the spread in
prices. The sensitivity with respect to conversion efficiency γc is rather high. For a given decrease
in conversion efficiency there is a greater decrease in revenue. For the 2010 data it was a twofold
decrease. For the arbitrage and regulation case the expected revenue is fairly insensitive to the
LMP. Since the optimal behavior in this case primarily involves participation in the regulation
market, the only effect of LMP changes is to slightly increase the net energy costs from conversion
efficiency losses. Changes in the regulation up/down efficiency, γRU , γRD have a small effect
on revenue, but it is important to model this parameter as accurately as possible. Changes in
the price of regulation have a significant effect as they are the primary source of revenue for this
scenario. Reductions in conversion efficiency have an effect but less than in the arbitrage only case.
As expected, the arbitrage trading strategies 1 and 2 are greatly affected by changes in the LMP.
Strategy 3, which focuses on the regulation market, is not significantly affected by changes in the
LMP. Changes in the price of regulation are directly correlated with the revenues from strategy 3.

The next section summarizes the algorithms and results presented in this paper.

5 Summary and Conclusions

We have developed an electricity energy storage model that can be used to evaluate the maximum
potential revenue for a storage device participating in arbitrage or arbitrage and the regulation
market. If parameters describing the regulation market (e.g. the fraction of reserve capacity
that is actually employed for regulation in real-time) are consistent over time, both problems
can be formulated as a LP optimization. The constraints on the regulation signal are not overly
burdensome. Electricity storage devices have limited energy so they often require a control signal
with an average value of zero or a slight charging bias to overcome losses and maintain a constant
state of charge. This is especially true of devices like flywheels. The state of charge model for the
electricity storage device is given by

St = γsSt−1 + γcq
R
t − qDt + γcγrdq

RD
t − γruqRU

t (54)
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2010 2011

Scenario Parameter ∆ or (value) Revenue % Change Revenue % Change

LMP
+10% $218,163 +10.00% $365192 +10.00%

nominal $198,331 0% $331,992 0%
Arbitrage -10% $178,498 -10.00% $298,793 -10.00%

Only
γc

-25% (60%) $102,083 -48.53% $228,263 -31.24%
-12.5% (70%) $148,489 -25.13% $282,898 -14.79%

0% (80%) $198,331 0% $331,992 0%

LMP
-10% $940,356 0.47% $1,286,236 -0.17%

nominal $935,975 0% $1,288,431 0%
+10% $932,406 -0.38% $1,292,028 0.28%

γru, γrd

-100% (0) $1,047,943 11.96% $1,372,601 6.53%
0% (0.25) $935,975 0% $1,288,431 0%

Arbitrage & +100% (0.5) $866,488 -7.42% $1,244,893 -3.38%
Regulation

RU, RD
-10% $838,854 -10.38% $1,163,257 -9.72%

nominal $935,975 0% $1,288,431 0%
+10% $1,033,919 10.46% $1,415,011 9.82%

γc

-25%(60%) $773,017 -17.41% $1,142,787 -11.30%
-12.5% (70%) $860,232 -8.09% $1,223,966 -5.00%

0% (80%) $935,975 0% $1,288,431 0%

LMP
-10% n/a n/a $196,847 -10.00%

Strategy 1 nominal n/a n/a $218,718 0%
+10% n/a n/a $240,590 10.00%

LMP
-10% $146,342 -10.00% $257,287 -10.00%

Strategy 2 nominal $162,602 0% $285,874 0%
+10% $178,863 10.00% $314,462 10.00%

LMP
-10% $902,079 0.96% $1,223,672 0.45%

nominal $893,545 0% $1,218,173 0%
Strategy 3 +10% $885,010 -0.96% $1,212,675 -0.45%

RU, RD
-10% $795,656 -10.96% $1,090,857 -10.45%

nominal $893,545 0% $1,218,173 0%
+10% $991,434 10.96% $1,345,489 10.45%

Table 9: Sensitivity analysis summary. CAISO TAP78 6 B1 node.
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2010 2011

Maximum Actual Maximum Actual
Strategy Revenue Revenue Revenue Revenue

1 N/A N/A $331, 992.49 $218, 718.48
2 $198,330.62 $162,602.55 $331,992.49 $285,874.36
3 $935,975.19 $893,544.7 $1,288,431.19 $1,218,173.0

Table 10: Summary of trading strategies benchmarked against the maximum potential revenue.

where St is the state of charge, qRt is the quantity purchased, qRt is the quantity sold, qRU
t is the

quantity offered into the regulation up market, and qRD
t is the quantity offered into the regulation

down market at each time step t. γS is the storage efficiency (fraction of stored energy maintained
over one period), γC is the conversion efficiency (fraction of input power that gets stored), γru
is the regulation up efficiency (fraction of regulation up offers that are accepted), and γrd is the
regulation down efficiency (fraction of regulation down offers that are accepted). Using this model,
it is possible to calculate the maximum potential revenue by formulating the problem as an LP
optimization that maximizes

J =
T∑
t=1

[
(Pt − Cd)qDt + (PRU

t + γru(Pt − Cd))qRU
t +

(PRD
t − γrd(Pt + Cr))q

RD
t − (Pt + Cr)q

R
t

]
e−rt

(55)

subject to the constraints of the energy storage device. Pt is the locational marginal price of
electricity, PRU

t is the market price for regulation up, PRD
t is the market price for regulation down,

Cd is the cost of discharging, Cr is the cost of recharging, and r is the interest rate for the time
value of money.

Using this formulation we conducted a case study for the Tehachapi Wind Energy Storage
Project, an ARRA storage demonstration project. Expected system parameters and historical data
from 2010-2011 for the CAISO TAP78 6 B1 node were used to evaluate the maximum potential
revenue from participating in arbitrage or arbitrage and the regulation market. For this particular
node and the storage system parameters, the revenue from participating in the regulation market
was approximately four times the revenue from an arbitrage-only strategy. Furthermore, a simple
regulation market trading strategy (strategy 3) can recoup 95% of the theoretical maximum revenue
(best possible with perfect knowledge). Not only was the arbitrage revenue lower, it was significantly
more difficult to implement a simple trading algorithm that captures a large portion of the maximum
possible revenue (strategy 1 and 2). A summary of three potential trading strategies benchmarked
against the maximum possible revenue appear in Table 10.

One area for future research is modeling pay-for-performance features as they are implemented
by various independent system operators as a result of FERC order 755. Some types of chemical
storage devices that are designed for “slow” energy time shift applications often are quickly degraded
if used for “fast” applications like frequency regulation. Although the life of the storage device might
be reduced, if the financial benefit is great enough there would be some interest in engaging in
activities that the device is not best suited for. We plan to characterize battery life as a function of
discharge signal frequency content to better quantify the costs associated with low frequency versus
high frequency applications. Then, using the same optimization approach presented in this report,
one can estimate the “optimal” mix of activities by assigning different costs for charging/discharging
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based on the activity. For example, Cd for frequency regulation might be significantly higher than
Cd for energy time shifting for a specific technology.
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Appendix A - Case Study Optimization Results
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Figure 10: January 2010 arbitrage only results for node TAP78 6 B1.
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Figure 11: February 2010 arbitrage only results for node TAP78 6 B1.
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Figure 12: March 2010 arbitrage only results for node TAP78 6 B1.
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Figure 13: April 2010 arbitrage only results for node TAP78 6 B1.
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Figure 14: May 2010 arbitrage only results for node TAP78 6 B1.
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Figure 15: June 2010 arbitrage only results for node TAP78 6 B1.
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Figure 16: July 2010 arbitrage only results for node TAP78 6 B1.
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Figure 17: August 2010 arbitrage only results for node TAP78 6 B1.
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Figure 18: September 2010 arbitrage only results for node TAP78 6 B1.
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Figure 19: October 2010 arbitrage only results for node TAP78 6 B1.
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Figure 20: November 2010 arbitrage only results for node TAP78 6 B1.
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Figure 21: December 2010 arbitrage only results for node TAP78 6 B1.
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Figure 22: January 2011 arbitrage only results for node TAP78 6 B1.
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Figure 23: February 2011 arbitrage only results for node TAP78 6 B1.
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Figure 24: March 2011 arbitrage only results for node TAP78 6 B1.
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Figure 25: April 2011 arbitrage only results for node TAP78 6 B1.
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Figure 26: May 2011 arbitrage only results for node TAP78 6 B1.
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Figure 27: June 2011 arbitrage only results for node TAP78 6 B1.
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Figure 28: July 2011 arbitrage only results for node TAP78 6 B1.

47



0

50

100

$
/
M
W

h

August 2011 Prices ($/MWh)

 

 

LMP

−10

0

10

M
W

Charge/Discharge Rate (MW)

0

10

20

30

Time (Hours)

M
W

h

State of Charge, Si (MWh)

Figure 29: August 2011 arbitrage only results for node TAP78 6 B1.
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Figure 30: September 2011 arbitrage only results for node TAP78 6 B1.
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Figure 31: October 2011 arbitrage only results for node TAP78 6 B1.
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Figure 32: November 2011 arbitrage only results for node TAP78 6 B1.
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Figure 33: December 2011 arbitrage only results for node TAP78 6 B1.
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Figure 34: January 2010 arbitrage and regulation results for node TAP78 6 B1.
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Figure 35: February 2010 arbitrage and regulation results for node TAP78 6 B1.

0

200

400

$
/
M
W

h

March 2010 Prices ($/MWh)

 

 

LMP
RU
RD

−10

0

10

M
W

Charge/Discharge Rate (MW)

0

10

20

30

Time (Hours)

M
W

h

State of Charge, St (MWh)

Figure 36: March 2010 arbitrage and regulation results for node TAP78 6 B1.
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Figure 37: April 2010 arbitrage and regulation results for node TAP78 6 B1.
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Figure 38: May 2010 arbitrage and regulation results for node TAP78 6 B1.
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Figure 39: June 2010 arbitrage and regulation results for node TAP78 6 B1.
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Figure 40: July 2010 arbitrage and regulation results for node TAP78 6 B1.
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Figure 41: August 2010 arbitrage and regulation results for node TAP78 6 B1.
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Figure 42: September 2010 arbitrage and regulation results for node TAP78 6 B1.
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Figure 43: October 2010 arbitrage and regulation results for node TAP78 6 B1.
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Figure 44: November 2010 arbitrage and regulation results for node TAP78 6 B1.
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Figure 45: December 2010 arbitrage and regulation results for node TAP78 6 B1.
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Figure 46: January 2011 arbitrage and regulation results for node TAP78 6 B1.
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Figure 47: February 2011 arbitrage and regulation results for node TAP78 6 B1.
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Figure 48: March 2011 arbitrage and regulation results for node TAP78 6 B1.
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Figure 49: April 2011 arbitrage and regulation results for node TAP78 6 B1.
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Figure 50: May 2011 arbitrage and regulation results for node TAP78 6 B1.
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Figure 51: June 2011 arbitrage and regulation results for node TAP78 6 B1.
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Figure 52: July 2011 arbitrage and regulation results for node TAP78 6 B1.
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Figure 53: August 2011 arbitrage and regulation results for node TAP78 6 B1.

0

50

100

$
/
M
W

h

September 2011 Prices ($/MWh)

 

 

LMP
RU
RD

−10

0

10

M
W

Charge/Discharge Rate (MW)

0

10

20

30

Time (Hours)

M
W

h

State of Charge, St (MWh)

Figure 54: September 2011 arbitrage and regulation results for node TAP78 6 B1.
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Figure 55: October 2011 arbitrage and regulation results for node TAP78 6 B1.
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Figure 56: November 2011 arbitrage and regulation results for node TAP78 6 B1.
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Figure 57: December 2011 arbitrage and regulation results for node TAP78 6 B1.
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